Assessing Flow Restoration Projects for Benefit: Past and Present

Kiza Gates

Science Division, Habitat Program
Washington Department of Fish and Wildlife
Kiza.Gates@dfw.wa.gov

History

 ➤ = One or more instream flow rules adopted into WAC

Instream Flows in Washington

- Water right for the stream
- Set by WDOE for water allocation and major projects
- Protect and restore habitat for fish and wildlife

Questions surrounding NEB

- What are the relationships between exempt wells and instream flows?
- What is the relationship between instream flows and ecosystem function, focused particularly on salmonids?
- How can water offsets and other mitigation projects compensate for the effects of future groundwater use?
- How do the above relate to the NEB concept?

From: Rosenfeld. 2017. Developing flowecology relationships: Implications of nonlinear biological responses for water management. Freshwater Biology.

Proportion of flow effect

 Reduction in flow leads to a similar and proportional change in ecological function

Threshold effect

Large change in ecosystem function occurs over small change in flow

Physical habitat

⇒Wetted width, depth, velocity

Water quality

Stream temperature

Energy flow

Food sources, food web complexity

Salmonid metrics

Growth, movement, survival

Community structure

Species and functional diversity Rosenfeld, 2017, Freshwater Biology

Physical habitat -Wetted width, depth, velocity

Water quality

Stream temperature

Energy flow

Food sources, food web complexity

Salmonid metrics

Growth, movement, survival

Community structure

Rosenfeld, 2017, Freshwater Biology

Physical habitat

-Wetted width, depth, velocity

Water quality

Stream temperature

Energy flow

Food sources, food web complexity

Salmonid metrics

Growth, movement, survival

Rosenfeld, 2017, Freshwater Biology

Community structure

Physical habitat

-Wetted width, depth, velocity

Water quality

Stream temperature

Energy flow

Food sources, food web complexity

Salmonid metrics

Growth, movement, survival

Rosenfeld, 2017, Freshwater Biology

Community structure

Physical habitat

-Wetted width, depth, velocity

Water quality

Stream temperature

Energy flow

Food sources, food web complexity

Salmonid metrics

Growth, movement, survival

Rosenfeld, 2017, Freshwater Biology

Community structure

WDFW Water Science Team

Protect and restore fish and wildlife habitat that depends on water quantity through water use management

- Instream flow science and assessment
- Water right review
- Flow restoration
- Flow acquisition monitoring

Flow restoration

Evaluate flow enhancement strategies for the State and NGOs including:

- Water right acquisitions
- Flow enhancements
- Water efficiency projects

Flow restoration: Kittitas Reclamation District canal supplementation

KRD Stream Supplementation

Monitoring Above and Below Supplementation_

- Flow
- Stage/discharge
- Water chemistry
- Benthic macroinvertebrate community

Supplementation in cubic feet per second				
Creek	2015	2016	2017	2018
Tucker	3	3	3	3
Big	11	6	6	12
Little	10	12	12	12
Spex Arth	3	3	3	NA
Tillman	3	3	3	4
Dry	15	NA	NA	NA

Water right review

Types of mitigation

Examples of In-Kind

- Replacing water for water, in time, in place
- Relinquish existing water rights into trust
- Conserving water from existing uses
- Flow augmentation from non-water right sources
- Storing or recovering surface or ground water
- Using reclaimed water

Out-of-kind

 Restoration and protection of critical habitat when water is not the primary limiting factor

Lacey/Olympia/Yelm municipal water

- Over-mitigation of some streams, modelled small depletion of others
- In-kind and out-of-kind projects
- Three cities, three state agencies, & two tribes agreed on wide ranging mitigation package for municipal water
- Yelm water right appealed and lost in state supreme court

Things to consider

- Empirical, regional, and modeling efforts in each watershed
- Flow-ecology relationship functions can affect management decision outcomes
- Context and complexity are important: landscape, geomorphic, environmental

Steps toward assessing watershed benefit

- What are the historic monitoring databases?
- Can you use metadata to understand local flow-ecology relationships?
- What sensitive metrics can you track with extensive low intensity monitoring?
- Can you incorporate long-term reference areas?

Reclaimed water

WDFW Water Science Team

- Kiza Gates, Olympia
- Steve Boessow, Olympia
- Tristan Weiss, Olympia
- Robert Granger, Pasco
- Jonathan Kohr, Yakima
- Cole Provence, Yakima
- Luke Stilwater, Yakima

Funding Provided by:

Assumptions relating to NEB

- Measure the impact/benefit of actions and link them to the management decisions
- Implement mitigation at the appropriate scale for the system to maintain its current function and be enhanced

Basins with Instream Flow Rules

Pump & dump

In-kind mitigation

Problematic alternatives

- Transferring water rights that are:
 - In open basins
 - Junior to instream flows
 - Without property restrictions
- Abandoning questionable water rights
- Temporary mitigation measures

Kennewick general hospital

- Cash in lieu of mitigation
- Annual fee over 40 years to fund 13 projects.
- Mostly out-of-kind, out-of-place
- Requires long-term commitment from agencies
- Appealed, settlement favorable to environment

\$6.5 M in restoration \$6.5 M to purchase senior rights

Out-of-kind mitigation

Restoration and protection of critical habitat when water is not the primary limiting factor

